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Abstract

This article presents our experience designing and implementing a Promise library for C++ named Prom-
ise++. Our Promise library is implemented using template meta-programming to pass system state between 
asynchronous tasks. We also introduce other C++ Promise libraries and present our experience using each in 
comparison to Promise++. Unlike existing C++ promise libraries, our implementation includes features to 
resolve a map of Promises well as fetching the result from a Promise. Based on our experience implementing 
and using C++ promise libraries, we learned it is possible to reduce cyclomatic complexity by ~ 25% at the cost 
of performance.
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Introduction  

 Promises were first mentioned as a concept in 1976 
by Daniel P. Friedman and David Wise, which was later up- 
dated in their 1978 revision [1, 2]. Friedman et al. intent 
was to provide high-level tools for expressing parallel code. 
A piece of their work showed that a placeholder for the re-
sult, called a Promise, can reference the value eventu- ally 
returned. Other researchers have also derived their own 
implementations of similar objects, such as the Even- tual 
[3], Future [4], and Defer [5]. These objects make par- allel 
and asynchronous programming easier by using con- tinu-
ation style programming (CSP) where instances can be passed as 
arguments or returned from functions [6, 7]. In the present 
day, Promises supported in popular pro- gramming lan-
guages, such as JavaScript, are based on the Promises/A+ 
standard [8]. Prior to Promises/A+, asyn- chronous pro-
gramming in JavaScript was done with many nested call-
back functions, which increase code complex- ity [9]. The 
Promises/A+ standard was therefore cre- ated to reduce 
the number of callback functions needed for asynchronous 
programming [10].

 Other languages, such as C++, do not have 
a standard for Promises as there are many libraries 
with different ap- proaches to CSP. For example, there 
is Promise-cpp [11] offers fast Promise consumption 
by taking advantage of Defer design methodology and 
in-place allocation. Like- wise, PoolQueue[12] extends 
the Boost Future [13] design to return a Promise from 
then() methods. The C++11 Standard Template Li-
brary (STL) [14] has Promises used together with Fu-
tures. The C++ community has also ex- tended the 
STL with CSP by attaching then() methods to the C++ 
Future. This is seen in frameworks such as High- Perfor-
mance ParallelX (HPX)[15] and Software Technol- ogy 
Lab (STLab) [16].

 Although existing C++ libraries allow develop-
ers to leverage Promises or CSP in their design, existing 
ap- proaches require additional constructs that increase a 
pro- gram’s complexity. To address this issue, we created 
Promise++. Promise++ is a library that implements Prom-
ises adhering to the Promises/A+ specification. The goal 
of this work is to decrease the complexity in applica- tions 
using Promises and CSP.

 In this article, we describe our experience using 
different approaches to Promises and CSP in the C++ 
runtime. We used each library on three asynchronous 
programming ex- amples and discuss the design trade-
offs between libraries in the context of cyclomatic com-
plexity and performance. Based on this understanding, 
the main contributions of this article are as follows:

 ·It demonstrates how to use existing Promise li-
braries in C++;

 ·It discusses, in detail, the design and implemen-
tation      of Promise++, and how it realizes the Promises/
A+ specification; and It discusses design trade-offs be-
tween different C++ Promise libraries.

 Article organization: The remainder of this ar-
ticle is organized as follows: Section 2 describes JavaS-
cript Promises and provides background information 
on exist- ing Promise libraries in C++; Section 3 intro-
duces the design behind Promise++; Section 4 presents 
our exam- ple applications and results on cyclomatic 
complexity and performance; Section 5 discusses lessons 
learned; Section 6 discusses related work; and, Section 7 
provides concluding remarks.

Background

Promises & Existing C++ Li- braries

 In this section, we discuss Promises in JavaS-
cript and the C++ libraries introduced in Section 1. We 
also illus- trate how to create and use Promises for each 
library with a simple program.

JavaScript and Promise/A+ Specification

 Listing 1 provides a simple example that illustrates 
Promise code in JavaScript, which uses the Promise/A+ 
specification. Lines 1-3 show a Promise created with a pair-
wise tuple of resolve() and reject() callback func- tions. 
The user may call either function to set the con- structed 
Promise to a value with resolve(), or to an ex- ception 
with reject(). This action is called settling the Promise. 
In the listing, we resolve the  Promise  to  the string “Hello 
World!”. 
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Listing 1: A simple example illustrating the structure and behavior of Promise code in JavaScript

 To enable continuous asynchronous execution, 
every Promise has a then () method that takes two 
function arguments. The first is a resolution function 
that de- fines code to execute after the Promise resolves 
to a value. The second argument is an optional rejection 
function (not shown in Listing 1) that defines code to run 
after a Promise is rejected. Additionally, there exists a 
catch () method that is a wrapper around then () for 
passing a rejection function only.

 In the A+ specification, the resolve () and 
reject ( function take an argument. The resolve () 
function is passed the value that the calling Promise 
will hold. The   reject () function is passed the reason 
(e.g. an exception) for execution failure. The then () 
and catch () methods must return a value or a Promise. 
This allows developers to chain asynchronous tasks that 
immediately execute af- ter the calling Promise is set-
tled (i.e., either resolved or rejected).

Listing 2: The Promise-cpp version of the JavaScript code sample where two separate Defers are 
created. The first starts a then() chain and the second begins another using the same resolved value
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 Promise chaining is illustrated in lines 5-10 of List-
ing 1. The parameter value holds the string “Hello World!” 
and is printed to the console before the function returns 
value 51.  When control exits the function a Promise is 
created that contains value 51. In lines 8-10, value is 51 is 
received as an argument and printed to the console. Chain-
ing can occur any number of times. Lines 12-14 of Listing 1 
show a new chain that simply prints “The value is still Hello 
World!” to the console.

Existing C++ Libraries

Promise-cpp

 Promise-cpp [11] is a library that allows developers 
to write Promise code in C++. In Promise-cpp, a Promise 
is represented using the Defer object that is constructed via 
a factory method [17] and Listing 2 illustrates the example 
from Listing 1 written with the Promise-cpp. In line 1, a 
Defer is created with the default constructor and a then() 
chain is formed in lines 3-8 where lambda expressions are 
the function handles for then() methods. The Defer is re-
solved to “Hello World!” in line 10 which will initiate asyn-
chronous execution. Lines 12-18, a new Defer is cre- ated 
to start a new chain for asynchronous execution.  A new 
Defer is required because Defer state is cleared after a chain 
completes.

PoolQueue

 PoolQueue [12] is another library that enables 
Promises in C++. Listing 3 illustrates the code from 
Listing 1 writ- ten using PoolQueue. In this listing, a 
Promise is created using the default constructor in line 
1. The then() chain is also formed with lambda expres-
sions in lines 3-9. In PoolQueue, all then() methods must  
return  a  value,  so the developer suggests nullptr is used 
for the last call- back in a chain. The created Promise is 
settled to “Hello World!” in line 16.

C++ Standard Template Library

 The Standard Template Library (STL) has sup-
port for Promises. Listing 4 illustrates the code from 
Listing 1 written with the STL library. In lines 1-6 of 
Listing 4 two Promises are created along with two Fu-
tures that will be used to retrieve a string and integer.   
These values will be stored into two variables “out1” and 
“out2.” Lines 8- 14 show a Thread passed a Promise where 
its value is set to “V12 Engine!” One of the Futures is used 
to suspend execution until the value is ready before a 
call to join the Thread.

 Lines 16-29 show the short then () chain formed 
using a combination of Threads, Promises, and Futures.

Listing 3: The PoolQueue version of the JavaScript code sample where two then () chains 

are began using the same Promise. Note the call to settle a Promise at the bottom
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 The first thread must be passed the previous value 
from “out1” and the next Promise to be settled. This Prom-
ise is resolved to value 51. Again a Future is used to retrieve 
the resolved value and assigned to another variable, “out2,” 
which is passed into the following thread for the last step in 
our chain.   No Promise is passed into this Thread since the 
chain terminates. A third Thread for starting a new chain 
uses the first Promise’s value from “out1” in lines 31-33.

the execution strategy for asynchronous tasks. The re-
turn value from the lambda expression, the second 
parameter, will be held by the Future. Lines 5-10 & 
12-14 show the   then () chains; however, separate Fu-
tures are generated from each method and must be 
captured. The user must explicitly wait on those new 
Futures, shown in Lines 16-18 & 20-22, to ensure safe 
termination.

Listing 4: The STL version of the JavaScript code sample where Promises 

are managed using a combition of STL futures Promises and threads
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High-Performance ParallelX

 High-Performance ParallelX (HPX) [15] ex-
tends the STL Future to handle asynchronous tasks with 
CSP. List- ing 5 shows the JavaScript example from List-
ing 1 written with HPX.In lines 1-3, async() executes a 
lambda expres- sion asynchronously where the return 
value is held within the produced Future.  In lines 5-10, 
the first then() chain is shown where Futures are the out-
put and input parame- ters for asynchronous tasks.  To 
start a new then() chain in HPX, a new Future must be 
created as illustrated in lines 12-18.

Software Technology Lab

 Software Technology Lab (STLab) [16] also 
re-defines Futures in C++ by enabling then() methods 
with their design. Listing 6 shows the JavaScript exam-
ple from List- ing 1 written with STLab. In lines 1-3, a 
Future is created using a factory method where the first 
parameter specifies

Design & Implementation

 In this section we introduce the design and im-
plemen- tation to Promise++ grown on top of the C++ 
paradigm. Promise++ features several reusable classes 
and interfaces to allow easy configuration of a Promise 
enabled system. These modules were written following 
the C++11 stan- dard.

 Listing 7 shows code from Listing 1 written with 
the Promise++ library. As illustrated on lines 1-3, a Promise 
is constructed by calling a factory method [17]. An Settle- 
ment object from Figure 2 is used to resolve the Promise 
to “Hello World!”. Similar to other frameworks, the then() 
chain is formed on lines 5-10 with lambda expressions. The 
number 51 is passed down stream by creating a resolved 
Promise. The library will extract and send 51 to the call- 
back on line 8. Lastly, a new chain is formed one lines 
12-14.

Listing 5: The HPX version of the JavaScript code sample 

where Futures are used instead of Promises
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Listing 6: The STLab version of the JavaScript code 

sample where Futures are used instead of Promises

Listing 7: The Promise++ version of the JavaScript code sample
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 To represent a Promise’s state, we used the State 
Soft- ware Pattern [17]. As seen in Figure 1, there are two 
concrete objects which refer to a resolved Promise and 
a rejected Promise. Respectively they are named the Re 
solved State and Rejected State. These objects are where 
type information for the resolved value and rejected ex-
ception are captured. Pending State refers to a Promise 
that has not settled yet. Once a Promise is Resolved or 
Rejected, it can never go back to a Pending state.

 When a user creates their own Promise in Ja-
vaScript, a resolve() and reject() function is used to 
settle a Promise to a value or error. This is implemented 
in many JavaScript as a pair-wise tuple such as line 1 in 
Listing 1. As seen in Line 1 of Listing 7, the Settlement 
object rep- resents that pair-wise tuple and is passed 
into the call- back function. A Settlement takes a 
Promise at creation time, shown in Figure 2, and holds 
for later use. The user has access to two methods, Set-
tlement.resolve() and Settlement.reject(), that will 
resolve or reject the held Promise.

Figure 1: Defines three classes for representing Promise resolved, rejected, and 

pending state. Those classes are Resolved State, Rejected State, and Pending State

Figure 2: Shows the design for a settlement object which resolves or rejects a Promise
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Handling many Promises & Fetching Results

 Promise++ features two procedures for processing 
many asynchronous tasks. The first is Promises::all() 
which takes a C++ Vector of Promises and returns a 
Promise resolved to a Vector with the values at the 
same indexes. If any of the Promises fail, the returned 
Promise will take the first rejected Promise.

 The second way users can process many asyn-
chronous tasks is to use Promises::hash() which takes a 
C++ Map instead of a Vector. The input domain to the 
Map can be any data type and the output domain are 
Promises. The returned Promise is resolved to a separate 
Map with the same input domain but the output domain 
will be the values. Again, the returned Promise will take 
the first rejected Promise if any of them fail.

Listing 8: Handle many Promises in a C++ Map 

and reference the results with the same keys

 Listing 8 shows an example using Promis-
es::hash(). Lines 1-5 is a function for creating a Prom-
ise. Lines 6-11 define the key-value pair type, the C++ 
Map, and insert pairs into the Map. Line 14 calls Prom-
ises::hash() and returns a Promise settled to a Map.  As 
far as the au- thors know, no other C++ Promise library 
has function- ality similar to Promises::hash().

 Promise++ also features a function to fetch the 
com- puted result from a Promise. Users can pass a 
Promise to Promises::await() which will suspend execu-
tion un- til the Promise is settled. If settled to Resolved-
State, then the value is returned where as an exception is 

thrown if the Promise is settled to RejectedState. Prom-
ises::await() only suspends execution of the thread own-
er. An exam- ple is shown on lines 17-20 of Listing 8 
where the Map is returned and results are accessed with 
string literals.

Experimental Results

 This section evaluates each library from Section 
2 based on cyclocmatic complexity and performance. 
We mea- sure cyclocmatic complexity using the C and 
C++ Code Counter (CCCC) open-source metrics tool 
[18] and we measure performance by taking the average 
execution time across 40 runs with an additional aux-
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iliary run conducted beforehand. The auxiliary run is 
used so process start-up time does not affect execution 
speeds.

 Three sample applications were used. The first ap-
plica- tion is the simple code from Listing 1 converted to 
each framework. The second application, called “Future 
Re- duce”, randomly returns pass or fail from a routine X 
number of times and reduces the results to a single inte- 
ger. The third application, called “Pipeline”, trims leading and 
trailing white space from strings in a pipe. The “Fu- ture 
Reduce” and “Pipeline” applications were modified from 
High Performance ParallelX [15] quick start exam- ples.  
To server as the benchmark,  we use Promises from the 
Standard Template Library (STL) [14] because it is auto-
matically shipped with the modern C++ runtime.

Experimental Setup

 Code was executed on a 64-bit 8GB RAM ma-
chine us- ing the Ubuntu 18.04 operating system and an 
Intel i5- 5250U 2-core processor with 1.6 GHz. The source 
code was compiled using GNU C++ Compiler (g++) 
version 7.4.0. The workspace was setup using The Make-
file, Project, and Workspace Creator [19], which runs a 
Perl script to cre- ate the necessary Makefiles which auto 
configured for your local machine’s environment.

Experimental Results

 From Figure 3, the STL has the lowest cyclomatic 
com- plexity in the “Simple” application because the main() 
function is the only linear independent path. All other li-
braries increase the number of paths with each lambda ex-
pression in a then() chain. Promise++ reduces com- plexity 
in the “Pipeline” and “Future Reduce” examples by  25% and 
20% respectively.  Factors contributing to complexity are:

 1. ~The number of functions and lambda expressions. Each 
function or lambda expression contributes to the number of 
linear independent paths. The STL version of the “Simple” pro-
gram has a complexity of one be- cause the main function 
is the only procedure present.All other libraries use several 
lambda expressions to represent asynchronous tasks and 
thus add to an ap- plication’s complexity metric.

 2. The number of Promises needed to start new chains. Prom-
ise creation is separate from asynchronous task execu-
tion in libraries such as Promise-cpp and PoolQueue.

 The lambda expressions used for ini- tializa-
tion are run after a Promise is settled and, therefore, 
are written as new linear paths in then() methods. 
Promise++ combines Promise creation and asynchro-
nous tasks in the same methods. In HPX, a new Future 
is required to form new chains which also contributes 
to complexity.

 3. System cleanup after asynchronous tasks complete. Some 
libraries, such as  STL  and  STLab,  require cleanup proce-
dures after a task has completed  exe- cution. Every function 
is  another  linear  independent path and adds to a programs 
complexity.

 4. The number of control statements needed within call-
back functions. Sometimes more control state- ments are 
necessary for fault-tolerant code. With Promise++, if/
then statements  may  be necessary to ensure the call 
to Settlement.resolve() or Settlement.reject() is in-
voked. Each new control statements is another lin-
ear independent path.

 Figure 4 shows our experimental performance 
results with the fastest run-time from STLab which was 
93% faster than the benchmark.   Promise-cpp was   92% 
faster, PoolQueue was  88% faster, HPX was   67% ~ fast-
er, and Promise++ was 10% faster.  The primary factor 
contributing to performance slowdowns is memory and 
thread management. In the STL, PoolQueue and Prom-
ise++, the system allocators and deallocators are called 
each time a new Promise or value is created which im-
pacts performance as the input size increases. The STL, 
Promise-cpp, and Promise++ all use system threads 
with- out any pool mechanism, so performance is af-
fected when the maximum limit is reached and tasks are 
suspended. In HPX, the call to textttFuture.get() outside 
of lambda ex- pressions suspends execution when the 
value is not ready and thus contributes to system slow-
downs. STLab has several variations of thread pools, in-
cluding an abstrac- tion around system threads. Tasks 
are executed based on a priority which the user can 
specify. For these reasons, STLab had the fastest run-
time.
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Figure 3: Illustrates the change in cyclomatic complexity across Promise designs

Figure 4: Shows run-times for each library
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Threats to Validity

 Our results in this study are based on two as-
sumptions, representing threats to validity. These limita-
tions are as follows:

 5. Promise creation. Our performance experiments 
are based on Promise creation and destruction. New 
Promises or Futures are created with each call to then(). 
This can affect an applications performance since mem-
ory allocation and deallocation are expen- sive opera-
tions. Moreover, all sample code uses the system alloca-
tor behind the scenes which also affects execution speed 
because there is multiple threads con- tending for the al-
locator.

 6. CCCC and cyclomatic complexity. When measur-
ing cyclomatic complexity, the C and C++ Code Counter 
(CCCC) only counts functions or lambda expressions with 
return statements.  Therefore,  those  callbacks with return 
type void do not contribute to the number of linear inde-
pendent paths.

Lessons Learned

 After using many C++ Promise & Future librar-
ies in- cluding our own, we learned some lessons, which 
may be helpful to individuals creating their own imple-
mentations.

Reducing the cyclomatic complexity may cost you 
speed

 Existing C++ Promise and CSP libraries intro-
duce sev- eral accidental complexities that make asynchro-
nous appli- cations difficult to understand and hard to 
program. We, therefore, created a library that reduces 
cyclomatic com- plexity. However, as shown in Section 
4, our experience suggests that applications may run 
slower.

Correctly handling Promise state is vital

 Managing memory and threads is important 
with CSP libraries because they are the first and last en-
tities with access into Promises before the state changes. 
When a task completes and returns a value, that value 
is contained within the Promise forever. This essential-
ly means that some entity, usually an allocator, must be 

robust enough to create a value that can live until de-
struction time which is undefined. Moreover, that value 
must travel between asynchronous tasks and thus it is 
the thread manager’s responsibility to pass the value to 
the appropriate desti- nation.

Related Work

 Tamino Dauth and Martin Sulzmann [20] com-
pare two C++ libraries, Boost.Thread [21] and Facebook’s 
Folly li- brary [22]. Both libraries extend the STL Future 
with their own versions of the then() method and the 
authors dis- cuss the design differences between the two. 
The authors also developed their on C++ framework for 
CSP called the Advanced Futures & Promises in C++ 
(ADV). ADV combines ideas from Boost.Thread and 
Folly, specifically the use of executors such as thread 
pools and a method to filter Futures that do not meet a 
predicate condition. We did not include Boost.Thread, 
Folly, or ADV in our evaluation of C++ CSP libraries 
because Dauth and Sulz- mann already provide an in-
depth comparison of the de- signs. Our experience re-
port, however, differs from the authors in that we also 
consider cyclomatic complexity as a factor to CSP de-
sign.

 Promise/A+ [8] lists known Promise imple-
mentations in several languages, such as Python and 
Perl, that are compliant with the A+ specification. The 
Promises/A+ organization does not give a comparison 
between imple- mentation. They do define a suite of Ja-
vaScript test cases that, when passed, indicate a library 
successfully imple- ments A+ Promises.

 Another C++ implementation for CSP is Libq 
[23]. Libq differs from other implementations by dis-
patching tasks to Queue data structures which are as-
signed to spe- cific threads. This allows the user to decide 
which thread a function is called. We did not include Libq 
in our study be- cause its design for Promise creation is 
similar to Promise- cpp and PoolQueue. With Libq, a 
separate Promise must be created to re-start a then() 
chain and this design is already well represented in 
our study.
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Conclusion

 This article describes our experience using C++ 
Promise libraries; including, our own implementation 
of the Promises/A+ specification named Promise++. We 
discuss the design trade-offs between frameworks in the 
context of cyclomatic complexity and performance. The 
key contribution of this article is represented by the lessons 
learned from using and writing C++ Promise libraries. 
Lessons learned about cyclomatic complexity and resource 
management have potential to affect a libraries usability 
in the context of performance.

 Promise++ is freely available in open-source for-
mat for download from the following location: https://
github. com/SEDS/promisepp.
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